A curious identity that implies Faber's conjecture

نویسندگان

چکیده

We prove that a curious generating series identity implies Faber's intersection number conjecture (by showing it combinatorial already given in (Garcia-Failde, Kramer, Lewański, and Shadrin, SIGMA 15 (2019), 080)) give new proof of by directly proving this identity.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Determinant Identity that Implies Rogers-Ramanujan

We give a combinatorial proof of a general determinant identity for associated polynomials. This determinant identity, Theorem 2.2, gives rise to new polynomial generalizations of known Rogers-Ramanujan type identities. Several examples of new Rogers-Ramanujan type identities are given.

متن کامل

A curious binomial identity

In this note we shall prove the following curious identity of sums of powers of the partial sum of binomial coefficients.

متن کامل

A Combinatorial Proof of Sun's \Curious" Identity

A binomial coeÆcient identity due to Zhi-Wei Sun is the subject of half a dozen recent papers that prove it by various analytic techniques and establish a generalization. Here we give a simple proof that uses weight-reversing involutions on suitable con gurations involving dominos and colorings. With somewhat more work, the method extends to the generalization also. 0 Introduction The identity

متن کامل

The Graham Conjecture Implies the Erdös-turán Conjecture

Erdös and Turán once conjectured that any set A ⊂ N with

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of The London Mathematical Society

سال: 2022

ISSN: ['1469-2120', '0024-6093']

DOI: https://doi.org/10.1112/blms.12659