A curious identity that implies Faber's conjecture
نویسندگان
چکیده
We prove that a curious generating series identity implies Faber's intersection number conjecture (by showing it combinatorial already given in (Garcia-Failde, Kramer, Lewański, and Shadrin, SIGMA 15 (2019), 080)) give new proof of by directly proving this identity.
منابع مشابه
A Determinant Identity that Implies Rogers-Ramanujan
We give a combinatorial proof of a general determinant identity for associated polynomials. This determinant identity, Theorem 2.2, gives rise to new polynomial generalizations of known Rogers-Ramanujan type identities. Several examples of new Rogers-Ramanujan type identities are given.
متن کاملA curious binomial identity
In this note we shall prove the following curious identity of sums of powers of the partial sum of binomial coefficients.
متن کاملA Combinatorial Proof of Sun's \Curious" Identity
A binomial coeÆcient identity due to Zhi-Wei Sun is the subject of half a dozen recent papers that prove it by various analytic techniques and establish a generalization. Here we give a simple proof that uses weight-reversing involutions on suitable con gurations involving dominos and colorings. With somewhat more work, the method extends to the generalization also. 0 Introduction The identity
متن کاملThe Graham Conjecture Implies the Erdös-turán Conjecture
Erdös and Turán once conjectured that any set A ⊂ N with
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of The London Mathematical Society
سال: 2022
ISSN: ['1469-2120', '0024-6093']
DOI: https://doi.org/10.1112/blms.12659